BNL Covariance Effort (mini-CSEWG, Port Jefferson, June 22-23, 2010) M. Herman National Nuclear Data Center, Brookhaven National Laboratory mwherman@bnl.gov # Advanced Fuel Cycle Initiative (AFCI) #### Major covariance effort by BNL and LANL List of nuclei in AFCI (priority materials in **bold**) | ^{1}H | 28 Si | ⁹² Mo | 109 Ag | ¹⁴⁹ Sm | ²³² Th | |-------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------| | ^{2}H | 29 Si | 94 Mo | $^{127}\mathrm{I}$ | 151 Sm | ^{233}U | | ⁴ He | 30 Si | ⁹⁵ Mo | ^{129}I | ¹⁵² Sm | ^{234}U | | ⁶ Li | ⁵⁰ Cr | ⁹⁶ Mo | 131 Xe | 153 Eu | 235 U | | ⁷ Li | ⁵² Cr | 97 Mo | ¹³² Xe | ¹⁵⁵ Eu | $^{236}\mathbf{U}$ | | ⁹ Be | ⁵³ Cr | ⁹⁸ Mo | ¹³⁴ Xe | 155 Gd | $^{238}\mathbf{U}$ | | $^{10}\mathbf{B}$ | ⁵⁵ Mn | 100 Mo | 133 Cs | 156 Gd | ²³⁷ Np | | $^{11}\mathbf{B}$ | ⁵⁴ Fe | ⁹⁹ Tc | 135 Cs | 157 Gd | 238 Pu | | 12 C | ⁵⁶ Fe | 101 Ru | ¹³⁹ La | 158 Gd | 239 Pu | | ^{15}N | ⁵⁷ Fe | 102 Ru | ¹⁴¹ Ce | 160 Gd | ²⁴⁰ Pu | | $^{16}\mathbf{O}$ | ⁵⁸ Ni | 103 Ru | $^{141}\mathbf{Pr}$ | ¹⁶⁶ Er | ²⁴¹ Pu | | $^{19}\mathrm{F}$ | 60 Ni | 104 Ru | 143 Nd | ¹⁶⁷ Er | 242 Pu | | 23 Na | ⁹⁰ Zr | 106 Ru | 145 Nd | ¹⁶⁸ Er | 241 Am | | 24 Mg | ⁹¹ Zr | 103 Rh | 146 Nd | ¹⁷⁰ Er | 242m Am | | 25 Mg | ⁹² Z r | 105 Pd | 148 Nd | ²⁰⁴ Pb | 243 Am | | 26 Mg | 93 Zr | ¹⁰⁶ Pd | ¹⁴⁷ Pm | ²⁰⁶ Pb | ²⁴² Cm | | ^{27}Al | ⁹⁴ Z r | 107 Pd | | ²⁰⁷ Pb | ²⁴³ Cm | | | 95 Zr | ¹⁰⁸ Pd | | ²⁰⁸ Pb | ²⁴⁴ Cm | | | 96 Zr | | | 209 Bi | ²⁴⁵ Cm | | | ⁹⁵ Nb | | | | ²⁴⁶ Cm | **AFCI/GNEP** project will provide 110 covariances, which will serve as a reference for constructing ENDF-6 formatted covariance files for ENDF/B-VII.1. LANL - light nuclei, actinides, fission spectra. BNL - structural materials, 23-Na, minor actinides, and all the rest including RR. - AFCI-1.2 library, August 2009 - AFCI-1.3 library, April 2010 - AFCI-2.0 library, August 2010 (to be used by SG33) # Covariance methodology at BNL Strength in diversity - Thermal and Resonance Region (source: Atlas of Neutron Resonances) - MF32 with scattering radius and thermal point uncertainties reproduced through correlations (if possible) - MF33 through the recently developed 'kernel approximation' - MF32 with systematic uncertainties in MF33 - 'low-fidelity' (Mark Williams) solution - Assimilation - Fast neutron range (MF33) - EMPIRE/KALMAN with/without experimental data - Dispersion analysis differences between evaluations - Reconsider previous work - Assimilation - Challenges - (i) correlations, (ii) correlations, (iii) correlations, ... - Tendency of the rigorous methods to provide unbelievable uncertainties - Producing uncertainties for the existing files - Goal for VII.1: provide consistent and reasonable set of covariances for nuclei relevant to AFCI (extensive checking) ## Covariances for structural materials ⁵²Cr, ⁵⁶Fe, ⁵⁸Ni M. Pigni - ENDF/B-VI.8 covariances in fast neutron region, due to Hetrick et al. (1991) who authored evaluations, **restored!** - Were dropped in VII.0 mostly because of RR - Uncertainties increased in the above-threshold regions due to: - discrepancy between VII.0 and other libraries - more pessimistic JENDL-3.3 estimates #### Changes in ⁵⁶Fe | E (MeV) | Uncertainty (original) | Uncertainty (adopted) | Reaction | |---------|------------------------|-----------------------|------------------------------------| | 1-2 | 1.5% | 7.5% | Total (MT=1) | | 1-2 | 3.9% | 15.9% | Absorption (MT=3) | | 1-2 | 3.3% | 15.9% | 1 st Exc. State (MT=51) | | 10-20 | 8.9% | 61.5% | Capture (MT=102) | ## Covariances for structural materials ⁵²Cr, ⁵⁶Fe, ⁵⁸Ni M. Pigni Analogous procedure applied to the remaining two structural materials ⁵²Cr & ⁶⁰Ni - JEFF-3.1 considered too low for ENDF/B-VII 0 - Very close to threshold discrepancy of 28% is observed! - Only a few points modified to minimize changes # Assimilation (INL&BNL) Linking integral experiments with reaction model parameters Using S_{Ik} , microscopic exp. data, and Kalman filter ==> $\langle \Delta p_k \, \Delta p_\ell \rangle$ covariance matrix, which contains constraints imposed by microscopic exp. data. ## **Assimilation** ²³Na(n,*) - EMPIRE/KALMAN used in the fast range - Fluctuations in above 1 MeV reproduced with 'Tune' parameter in EMPIRE - ~120 resonance and reaction model parameters varied - Scattering radius included (no correlations) ### Conclusions - Covariances for 110 AFCI materials to be ENDF-6 formatted and included in the ENDF/B-VII.1 release in Dec. 2011 - Covariances for the priority materials included in the beta-0 version (Dec. 2010) - BNL contributes to the processing codes comparison (see talk by Ramon) - Quality Assurance a smart system, influential system implemented at BNL (PO) - We are still working on improving covariance methodology, e.g., 'kernel approach', assimilation, ... Motto for covariances: 'Might not be perfect but must be sensible'